Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nucleic Acids Res ; 49(D1): D266-D273, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1387962

ABSTRACT

CATH (https://www.cathdb.info) identifies domains in protein structures from wwPDB and classifies these into evolutionary superfamilies, thereby providing structural and functional annotations. There are two levels: CATH-B, a daily snapshot of the latest domain structures and superfamily assignments, and CATH+, with additional derived data, such as predicted sequence domains, and functionally coherent sequence subsets (Functional Families or FunFams). The latest CATH+ release, version 4.3, significantly increases coverage of structural and sequence data, with an addition of 65,351 fully-classified domains structures (+15%), providing 500 238 structural domains, and 151 million predicted sequence domains (+59%) assigned to 5481 superfamilies. The FunFam generation pipeline has been re-engineered to cope with the increased influx of data. Three times more sequences are captured in FunFams, with a concomitant increase in functional purity, information content and structural coverage. FunFam expansion increases the structural annotations provided for experimental GO terms (+59%). We also present CATH-FunVar web-pages displaying variations in protein sequences and their proximity to known or predicted functional sites. We present two case studies (1) putative cancer drivers and (2) SARS-CoV-2 proteins. Finally, we have improved links to and from CATH including SCOP, InterPro, Aquaria and 2DProt.


Subject(s)
Computational Biology/statistics & numerical data , Databases, Protein/statistics & numerical data , Protein Domains , Proteins/chemistry , Amino Acid Sequence , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Computational Biology/methods , Epidemics , Humans , Internet , Molecular Sequence Annotation , Proteins/genetics , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Analysis, Protein/methods , Sequence Homology, Amino Acid , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
2.
ACS Chem Neurosci ; 11(22): 3701-3703, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-899862

ABSTRACT

Cell entry, the fundamental step in cross-species transmission of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is initiated by the recognition of the host cell angiotensin-converting enzyme-2 (ACE2) receptor by the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. To date, several peptides have been proposed against SARS-CoV-2 both as inhibitor agents or as detection tools that can also be attached to the surfaces of nanoparticle carriers. But owing to their natural amino acid sequences, such peptides cannot be considered as efficient therapeutic candidates from a biostability point of view. This discussion demonstrates the design strategy of synthetic nonprotein amino acid substituted peptides with enhanced biostability and binding affinity, the implication of which can make those peptides potential therapeutic agents for inhibition and simple detection tools.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Design , Peptide Fragments/therapeutic use , Pneumonia, Viral/drug therapy , Amino Acid Sequence , Antiviral Agents/metabolism , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Humans , Pandemics , Peptide Fragments/genetics , Peptide Fragments/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Protein Binding/physiology , SARS-CoV-2 , Sequence Analysis, Protein/methods
3.
Nucleic Acids Res ; 49(D1): D412-D419, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-894614

ABSTRACT

The Pfam database is a widely used resource for classifying protein sequences into families and domains. Since Pfam was last described in this journal, over 350 new families have been added in Pfam 33.1 and numerous improvements have been made to existing entries. To facilitate research on COVID-19, we have revised the Pfam entries that cover the SARS-CoV-2 proteome, and built new entries for regions that were not covered by Pfam. We have reintroduced Pfam-B which provides an automatically generated supplement to Pfam and contains 136 730 novel clusters of sequences that are not yet matched by a Pfam family. The new Pfam-B is based on a clustering by the MMseqs2 software. We have compared all of the regions in the RepeatsDB to those in Pfam and have started to use the results to build and refine Pfam repeat families. Pfam is freely available for browsing and download at http://pfam.xfam.org/.


Subject(s)
Computational Biology/statistics & numerical data , Databases, Protein , Proteins/metabolism , Proteome/metabolism , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Computational Biology/methods , Epidemics , Humans , Internet , Models, Molecular , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Proteome/classification , Proteome/genetics , Repetitive Sequences, Amino Acid/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL